组合的可行集,又称可行域。是指一组证券的所有可能(行)组合的集合。在有多个证券组成的证券组合中,如果选定了每种证券的投资比例,就确定了一个证券组合,进而可以计算这个组合的期望收益率和标准差。从几何这就可以在以标准差为横坐标、期望收益率为纵坐标确定的坐标系Ep——σp中确定一个点。如果改变投资比例产生另一个证券组合,其组合的期望收益率和标准差也为EP—oP坐标系中的一个点。因而,每个证券组合都对应于Ep——σp中的一个点;反过来,Ep——σp中的某个点有可能反映一个特定的证券组合。
如果投资者选择了全部的可以选择的投资比例,那么,每个证券组合在Ep——σp中的点将组成一个EP—oP中的区域。这个区域就是可行域(feasible set)。可行域中的点所对应的组合才是“有可能实现”的证券组合。(如下图)可行域之外的点是不可能实现的证券组合。下图归纳了几种典型的可行域。
如图,可行域左上边缘部分必然向外凸或呈线性,即不会出现凹陷。其中,封闭的可行域是不允许卖空情况下的示例,有开口而不封闭的图示表示允许卖空情况下的可行域。
(二)证券组合的有效边界
给定风险水平下具有*6期望回报率的组合被称为有效组合,有效集或有效边界是指所有有效组合的结合。
投资者在证券组合的选择上遵循下述规则:
1.如果两种证券组合具有相同的收益率标准差,投资者选择期望收益率高的一种组合;
2.如果两种证券组合具有相同的期望收益率和不同的收益率标准差,那么它就选择标准差较小的那种组合;
3.如果一种证券组合比另一种证券组合具有较小的标准差和较高的期望收益率,则选择前一种组合。这种选择规则,我们称之为投资者的共同偏好规则。
在图中,可行域的左端点将可行区域分为上下两部分,图中任何一点都一定比上部分边缘上的点“坏”,同时,一定比下部分边缘上的点“好”。上部分边缘上的点对应的各种资产组合,不仅在同等收益水平下风险最小,还满足同等风险水平上收益*6的条件,是理性投资者的理想选择。所有的这种有效组合在可行域的图形中,组成了可行域的左上方的边界,我们称之为有效边界。对于可行域内部及下边缘上的任意可行组合,均可以在有效边界上找到一个有效组合比它好。但有效边界上的不同组合,比如B和C,按共同偏好规则,不能区分好坏。因而有效组合相当于有可能被某位投资者选作a1组合的候选组合,不同投资者可以在有效边界上获得任何位置。
图中粗线部分为几种有效边界。由于可行域的形状所限,有效边界一定是向外凸的(不会有凹陷),但允许有线性部分。
报考指南:2013年证券从业资格考试报考指南
考前冲刺:证券从业资格考试试题 索取证券考试通关宝典
高清网课:证券从业资格考试网络课程