考试来临不用紧张,高顿网校小编为你出妙招。下面是小编整理的统计从业《统计基础知识与统计实务》科目中的知识点,大家可参考着进行复习。祝大家考试顺利!
 
  变异指标前述算术平均数、 中位数和众数, 都是用来反映现象的集中趋势,也就是说它们反映了总体中各单位相互差异标志值的共性。但为了更全面地研究总体的数量状况,就还需要另一种类型的指标,反映总体中各单位相互差异的程度,也就是现象的离中趋势。这类指标在统计中称为变异指标(或称变动指标、标志变动度)。
 
  变异指标的意义和种类
  变异指标是反映总体各单位标志值分布特征的重要综合指标。它反映总体各单位标志值的差异大小或程度,也就是反映分配数列中以平均数为中心各标志值的大小范围或差异程度。
  变异指标和平均数指标都是分析变量数列的重要指标。平均数指标是测定变量数列的集中趋势,而变异指标则是测定变量数列的离中趋势。因此不仅要计算平均数指标,而且要计算变异指标,两者互相配合,互相补充,才能对总体作出全面的分析。
 
  变异指标在社会经济统计分析中的重要作用,可以简述为以下两点:
  1.衡量平均数代表性的大小
  平均数指标作为总体各单位标志值集中趋势的代表性,其代表性的大小与总体各单位标志值差异程度有直接关系。可以证明这种关系表现为总体的变异指标值愈大,平均数代表性愈小;反之,变异指标值愈小,平均数代表性愈大。      
        2.反映社会经济发展过程的节奏性、均衡性和稳定性
  (一)全距
  全距是一种最简单的测定变异程度的指标。它是总体中标志值的*5标志值与最小标志值之差,说明标志值的变动范围, 用R表示。例如,某生产班有11个工人,他们的日产零件数分别为:15、17、19、20、22、22、23、23、25、26、30件。该班日产零件数变异全距为:R=30-15=15件。
  全距的优点是计算方法简单,但是它只说明总体中两个极端标志值的差异范围,而不能全面反映各单位标志值的变异程度。这是全距的局限性。
  (二)平均差
  平均差是各个标志值对算术平均数的离差的平均数。由于各个标志值对算术平均数的离差总和等于0, 因而各项离差的平均数也等于0。为此,在计算离差平均数时,便采用离差的绝对值。
 
  高顿小编赠言:能把在面前行走的机会抓住的人,十有八九都会成功。大家要抓紧眼前的学习机会,小编相信考试难不倒大家的!