2023集美大学考研805高等代数考试大纲公布!考试大纲指明了专业课考试的试题范围,是考生考研复习的一大利器,必须认真研读和准备。小编整理了考试大纲的内容,供各位考生参考!

  考试科目代码:[805]
  考试科目名称:高等代数
  一、考核目标
  (一)考查考生对高等代数的基本概念、主要理论、重要方法的理解与掌握程度。
  (二)考查考生的数学抽象思维、逻辑推理及运算求解能力,提高分析问题、解决问题能力。
  二、试卷结构
  (一)考试时间:180分钟,满分:150分。
  (二)题型结构
  1、填空题:6小题,每小题5分,共30分。
  2、解答题(含证明题):7小题,每小题10-20分,共120分。
  三、答题方式
  闭卷笔试。
  四、考试内容
  注:以下各章分值为参考分,允许有5分的上下浮动。
  (一)多项式,20分
  考试内容:
  整除理论、因式分解理论、根的理论。
  考试要求:
  (1)理解带余除法、整除、最大公因式、互素、重因式、根等有关结论。
  (2)掌握互素的证明、不可约的判别、综合除法、最大公因式、重因式、标准分解式与有理根的求法。
  (3)了解矩阵或线性变换的多项式。
  (二)行列式与线性方程组,20分
  考试内容:
  行列式的计算、线性方程组解的理论。
  考试要求:
  (1)理解行列式概念,掌握行列式的常用计算方法;熟悉行列式与方程组、可逆矩阵、矩阵秩、二次型、特征值等的关系。
  (2)理解线性方程组解的求法、判定与结构,掌握含参数线性方程组的讨论与求解,理解齐次方程组的基础解系或解空间与系数矩阵秩的关系。
  (三)矩阵,20分
  考试内容:
  矩阵的运算、矩阵的秩与矩阵的分解、分块矩阵及其初等变换的应用。
  考试要求:
  (1)掌握矩阵的各种运算、矩阵的秩、可逆矩阵。
  (2)理解初等矩阵与初等变换的关系、分块矩阵及其应用,了解矩阵分解。
  (3)掌握重要知识点联系及其逆否命题:
  元齐次方程组有非零解3A7的列向量组线性相关方阵15C不可逆139方阵15C含有零特征值,等等。
  (四)二次型,20分
  考试内容:
  标准形与规范形、正定问题。
  考试要求:
  (1)掌握化二次型为标准形或规范形的方法、正定问题的判定与证明。
  (2)了解合同、负定、半正定的概念。
  (五)线性空间,20分
  考试内容:
  向量组的线性相关性、基、维数和坐标、子空间的和与直和。
  考试要求:
  (1)了解线性空间的概念、性质以及同构思想。
  (2)理解向量组线性无关的常规证法,基与维数的求法与证明。
  (3)掌握子空间直和的证明。
  (六)线性变换,20分
  考试内容:
  线性变换的概念、线性变换的矩阵、相似、特征值特征向量与对角化、值域、核与不变子空间。
  考试要求:
  (1)了解线性变换与方阵的同构对应关系。
  (2)理解线性变换、值域与核、不变子空间的概念。
  (3)会求线性变换在基下的矩阵,熟悉相似的概念与性质。
  (4)掌握特征值与特征向量的求法与证明,对角化问题的判别与讨论;区别线性变换与方阵的特征向量、对角化问题。
  (七)Jordan标准形,10分
  考试内容:
  最小多项式、Jordan标准形。
  考试要求:
  (1)了解不变因子、初等因子的求法以及与矩阵相似的关系。
  (2)理解最小多项式的概念与基本性质,掌握最小多项式、Jordan标准形的求法与应用。
  (八)欧氏空间,20分
  考试内容:
  内积与标准正交基、正交变换和对称变换。
  考试要求:
  (1)了解欧氏空间、正交补的概念,理解标准正交基的性质及其求法。
  (2)理解正交变换和对称变换的主要特征及相关证明,
  (3)掌握实对称矩阵的正交相似对角化的计算,利用实对称矩阵性质进一步讨论正定问题。
  五、主要参考书目
  (一)《高等代数》,王萼芳、石生明,高等教育出版社,2013年(修订),第四版。
  (二)《高等代数导教导学导考》,徐仲等,西北工业大学出版社,2004版。
  以上是关于【2023集美大学考研805高等代数考试大纲公布!】的内容,希望能帮助准备考研的同学们节省备考时间、提高备考效率。
  如果还想了解关于考研方面的知识,赶紧来高顿考研看看吧,里面包含了大量的考研资料和动态哦!点击下方蓝色小卡片,会掉落丰厚的考研备考资料,赶快领取吧!