下面的【历年SOA真题】November2005ExamM(1)——北美精算师,请尽快消化掉。因为还有更多的大纲等着你们。
  Exam M Fall 2005
  FINAL ANSWER KEY
  Question # Answer Question # Answer
  1 C 21 E
  2 C 22 B
  3 C 23 E
  4 D 24 E
  5 C 25 C
  6 B 26 E
  7 A 27 E
  8 D 28 D
  9 B 29 A
  10 A 30 D
  11 A 31 A
  12 A 32 A
  13 D 33 B
  14 C 34 C
  15 A 35 A
  16 D 36 A
  17 D 37 C
  18 D 38 C
  19 B 39 E
  20 B 40 B
 
  Exam M: Fall 2005 -1- GO ON TO NEXT PAGE
  **BEGINNING OF EXAMINATION**
  1. For a special whole life insurance on (x), you are given:
  (i) Z is the present value random variable for this insurance.
  (ii) Death benefits are paid at the moment of death.
  (iii) ( ) 0.02, 0 xt t = ≥
  (iv) 0.08 δ=
  (v) 0.03, 0 t
  tb e t = ≥
  Calculate ( ) Var Z .
  (A) 0.075
  (B) 0.080
  (C) 0.085
  (D) 0.090
  (E) 0.095
 
  Exam M: Fall 2005 -2- GO ON TO NEXT PAGE
  2. For a whole life insurance of 1 on (x), you are given:
  (i) Benefits are payable at the moment of death.
  (ii) Level premiums are payable at the beginning of each year.
  (iii) Deaths are uniformly distributed over each year of age.
  (iv) 0.10 i =
  (v) 8 x a =
  (vi) 10 6 x a + =
  Calculate the 10th year terminal benefit reserve for this insurance.
  (A) 0.18
  (B) 0.25
  (C) 0.26
  (D) 0.27
  (E) 0.30
 
  Exam M: Fall 2005 -3- GO ON TO NEXT PAGE
  3. A special whole life insurance of 100,000 payable at the moment of death of (x) includes a
  double indemnity provision. This provision pays during the first ten years an additional
  benefit of 100,000 at the moment of death for death by accidental means.
  You are given:
  (i) τ
  x t t b gb g= ≥ 0 001 0 . ,
  (ii) x t t 1 0 0002 0 b gb g= ≥ . , , where x
  1 b g is the force of decrement due to death by
  accidental means.
  (iii) δ= 006 .
  Calculate the single benefit premium for this insurance.
  (A) 1640
  (B) 1710
  (C) 1790
  (D) 1870
  (E) 1970
  Exam M: Fall 2005 -4- GO ON TO NEXT PAGE
  4. Kevin and Kira are modeling the future lifetime of (60).
  (i) Kevin uses a double decrement model:
  x ( )
  x l τ ( ) 1
  x d ( ) 2
  x d
  60 1000 120 80
  61 800 160 80
  62 560
  (ii) Kira uses a non-homogeneous Markov model:
  (a) The states are 0 (alive), 1 (death due to cause 1), 2 (death due to cause 2).
  (b) 60 Q is the transition matrix from age 60 to 61; 61 Q is the transition matrix
  from age 61 to 62.
  (iii) The two models produce equal probabilities of decrement.
  Calculate 61 Q .
  (A)
  1.00 0.12 0.08
  0 1.00 0
  0 0 1.00
  (B)
  0.80 0.12 0.08
  0.56 0.16 0.08
  0 0 1.00
  (C)
  0.76 0.16 0.08
  0 1.00 0
  0 0 1.00
  (D)
  0.70 0.20 0.10
  0 1.00 0
  0 0 1.00
  (E)
  0.60 0.28 0.12
  0 1.00 0
  0 0 1.00
  高顿网校之名言警句:一般人在遇到对方的权势大,财富大,气力大,在无可奈何的情形之下而忍,这算什么忍耐呢?真正的忍是,就算他欺负了你,对不住你,但他什么都不及你,你有足够的力量对付他,而你却能容忍他,认为他的本性和我一样,只是一时糊涂,或在恶劣的环境中受到熏染罢了,你不必与他计较,能在这样的情况及心境之下容忍那才是真正的忍耐。